20th International Conference on 3D Web Technology

Webized 3D experience by HTML5 annotation in 3D Web

Daeil Seo^{1,2}, <u>Byounghyun Yoo^{2,*}</u>, Heedong Ko^{2,1}

¹ University of Science and Technology, Korea ² Korea Institute of Science and Technology, Korea

> Heraklion, Crete, Greece 19 June 2015

Korea Institute of Science and Technology

Contents

- Motivation
- Previous work
- Webizing 3D experience
- Prototype implementation
- Experimental results and Discussion
- Conclusion

Motivation

Motivation

- With the development of 3D Web technologies, 3D objects are now handled as HTML markup without plugins on web pages
- However, although declarative 3D objects are physically integrated into web pages, the 3D objects still involve the same separation of the HTML element from the perspective of the 3D layout

← → C f

C f examples.x3dom.org/cadViewer/sceneGraphConrod/index.html#

Views Visibility Navigation Modes Debug Annotation

Suche:

Ð

🧶 👩 💟 🦷 🏆 🎞 🛈 🦸 🕥 🐢 🖉 😔 🎧 🚍

23

C

examples.x3dom.org/cadViewer/sceneGraphConrod/index.html#

5h 🕓 🗛 9 🧕 👰 💟 🖷 🔮 🗔 🛈 🗲 💊 🐢 🖉 😔 🎧 🚍

Visibility Navigation Modes Debug Annotation Views

Suche:

23

Sun

solar system

Orbit Velocity: 0 km/h Equatorial Circumference: 4,370,005 km From Earth: 149,598,262 km

ᠿ

ŋ

+

 \bigotimes

 \otimes

+

Earth Orbit Velocity: 107,218 km/h Equatorial Circumference: 40,030 km From Sun: 149,598,262 km

Mercury

Orbit Velocity: 170,503 km/h Equatorial Circumference: 15,329 km From Sun: 57,909,227 km

• • •

Ξ

0

S

1

4

ABP

+

+

0

S

Previous work

Previous work

3D Geom	netrical Objects	
This is an example of a HiVE. It describes fou and a pyramid.	r 3D geometrical objects: a cube, a torus, a sphere,	
The <u>cube</u> (here in blue) is a three- dimensional solid object bounded by six square faces, facets or sides, with three meeting at each <u>vertex</u> . A torus is a surface of revolution generated by revolving a circle in 3D space about an axis coplanar with the circle.	Cube	
A <u>sphere</u> is a perfectly round geometrical object (here in green). Like a <u>circle</u> in two dimensions, a perfect sphere is completely s surface laying the same distance from the complete the same distance from the	Pyramid ymmetrical around its center, with all points on the enter point. This distance is known as the <u>radius</u> of through the sphere is known as the <u>diameter</u> of the	
A <u>pyramid</u> is a polyhedron formed by connection Each base edge and apex form a triangle.	cting a polygonal base and a point, called the <u>apex</u> .	
	a sphere, and a pyramid) can be viewed in the 3D	

(a) 3D object on the Web and (b) a 3D object with HTML annotations

JANKOWSKI, J. AND DECKER, S. 2013. On the design of a Dual-Mode User Interface for accessing 3D content on the World Wide Web. International Journal of Human-Computer Studies 71, 838-857.

Previous work

X3DOM example of 3D-Scanned CH model with metadata

OGV and MP4 MovieTexture example

Example shows how you can easily provide multiple video-sources in a single MovieTexture Node

(Only OGV work in Minefield right now. WebKit only plays the mp4 sound)

X3D MovieTexture example

Our approach

Webizing 3D experience

Webizing

 A means of bootstrapping the Web using a large amount of legacy information [Berners-Lee 1998]

• Our Method

 Web annotations to declare the relationship between 3D target object and HTML annotation elements to share the 3D layout context on the 3D Web using web technologies

BERNERS-LEE, T. 1998. Webizing existing systems. In World Wide Web Consortium, personal notes on: Design Issues - Architectural and Philosophical Points, Last chage date: March 9, 2010.

3D Web annotation

	Legacy 3D Web content	Declarative 3D	Webized HTML5 annotation
Mechanism	MIME	DOM integration	3D context sharing
Examples	X3D	X3DOM, XML3D	Proposed
Annotation schema	?	?	Schema.org
Rendering model		Separate Canvas	Sharing 3D context of 3D scene and HTML annotation
Media type	2D page media	2D page media	3D place media (CSS extension)
Limitations	Separation of 3D context between contents (3D and HTML resources)	Separation of 3D context between contents (3D and HTML resources)	Depth buffer sharing issue (not resolved yet)
Advantage		No-plugins	Any HTML5 resources

Integration of HTML and 3D Web

- Previous

 CSS Paged
 Media
 - \circ 2D Space
- Proposed

 CSS Place Media [Ahn 2014]
 3D Space

AHN, S., KO, H. AND YOO, B. 2014. Webizing mobile augmented reality content. New Review of Hypermedia and Multimedia 20, 79-100.

19

Webizing 3D experience with annotation

Semantic

Webizing annotatior for the 3D Web expe

Property	Range	De	T/>
target	URL	3D val	 <div voo<br=""><di< td=""></di<></div>
translate	Integers	De	<di< td=""></di<>
rotate	Integers	De	<di <di< td=""></di<></di
scale	Integers	De	<a>
contentURL	URL	UR to a	

<x3d>

<Transform translation='81 0 0'>

<Scene>

<Shape DEF='earth'>

<Sphere radius='3.9'/>

<Appearance>

<Material diffuseColor='1 1 1'/>

<ImageTexture url='images/texture_earth_clouds.jpg' />

</Appearance>

</Shape>

</Scene>

</Transform>

</div>

div vocab="http://schema.org" typeof="AnnotationObject" id="earth_annotation">
 <div property="translate" class="annotation_property">0, 0, 150</div>
 <div property="rotate" class="annotation_property">0, 0, 0</div>
 <div property="scale" class="annotation_property">1, 1, 1</div>
 <div property="target" class="annotation_property">#earth</div>
 <div property="scale" class="annotation_property">1, 1, 1</div>
 <div property="target" class="annotation_property">#earth</div>
 </div property="target" class="annotation_property">#earth</div</div property="target" class="annotation_property">#earth</div</

<h2>Earth</h2>

Orbit Velocity: 107,218 km/h

Equatorial Circumference: 40,030 km

From Sun: 149,598,262 km

<iframe src="https:://www.youtube.com/embed/thuViaxRd_w?....."></iframe>

Prototype implementation

Prototype implementation

Experimental results

• Separate rendering results of the 3D Web

Web annotation rendering on the 3D Web

Experimental results

solar system ×
$\leftarrow \rightarrow \mathbb{C}$ [localhost/web3d $\bigotimes \mathbb{Q}$ $\square \bigcirc \equiv$
Image: Sector

3D planet objects in solar system

Experimental results

• 3D architectural CAD model of a house

User experience annotation on 3D model

Transforms web annotation of user experience on 3D model

Discussion and future work

Summary

- In this study, we proposed a method for webizing 3D experience by web annotation to express user experience on 3D Web
 - Uses web annotation model to declare relationship between user experience and 3D objects
 - Renders them based on the relationship to share layout and camera perspective in 3D context
 - Has advantage to use existing sophisticated media and application library resources of current web technologies on the 3D Web

Discussion

Interaction with HTML element on 3D Web

X3D MovieTexture example

http://examples.x3dom.org/example/x3dom_video.xhtml

Webized annotation on the 3D Web using Video, YouTube, and video tag of HTML

Discussion

• Rendering 3D objects with annotation on 3D Web

X3DOM example of 3D-Scanned CH model with metadata

localhost/sol N 🗖 Earth Solar System Velocity: 107,218 km/h natorial Circumference: 40,030 km solar system refers to a star and all the objects that travel in orbit around it. Our solar system in: 149 598 262 km consists of the sun - our star - eight planets and their natural satellites (such as our moon); dwarf locity: 0 km/h veneny: o knam prial Circumference: 4,370,005 km Earth: 149,598,262 km planets; asteroids and comets. Our solar system is ocated in an outward spiral of the Milky Wa 170 501 km/s

Webized annotation on the 3D Web with 2D and 3D layout annotated objects

http://examples.x3dom.org/v-must/Summerschool/index.html

Limitation and Future work

Limitation

 Our prototype implementation is limited to sharing the context of 3D layout and the context of the annotated content

• Future work

 $\,\circ\,$ Applying our method to 3D CAD system

www.byoo.net yoo@byoo.net