Procedural generation and interactive web visualization of natural environments

Benny Onrust Rafael Bidarra Robert Rooseboom Johan van de Koppel

Motivation

• Ecologists have a lot of different data about natural environments

- Landscape maps
- Coverage of plant species
- Patchiness of plant species
- They want to use 3D visualization to communicate ecological data over the web interactively to the general public

Main questions

 How to create convincing and correct plant distributions from ecological data?

• How to generate an interactive 3D web visualization of largescale environments with a large variety of plants?

Approach

Plant position generation

• Aim is to generate all possible plant positions

• No plant species are assigned during this phase

Plant species generation

• Aim is to assign plant species to the generated plant positions using the ecological data about coverage and patchiness

General process

- Connect ecological data to each point
- Generate patterns using fractal algorithm
- Classification based on coverage and fractal values

Fractal maps for each plant species

9

Classification for each plant species

Solve conflicting plant species

Generated plant distribution

Visualization model

 A WebGL renderer to 3D visualize the result of the vegetation model

Offline phase

• Plant model generation \rightarrow L-systems

Limonium Vulgare

Elymus Athericus

Atriplex Portulacoides

ŤUDelft

Artemisia Maritima

Aster Tripolium

Salicornia Europaea

14

Pre-computation phase

• Reduce geometry complexity: Levels of Detail

- Plant models
- Billboards
- Terrain color map
- Terrain mesh generation \rightarrow Height map
- Data is divided in blocks and stored in a quad tree structure
 - Plant distribution
 - Terrain

Rendering phase

Conclusions

- We developed a procedural algorithm that is able to generate convincing plant distribution based on ecological data
- An open-source WebGL renderer that is able to 3D visualize large natural environments with a large variety of plant species
- In the future, we could further integrate the vegetation and visualization model into a single automated pipeline.
- Video, live demo, and source code can be found at <u>https://graphics.tudelft.nl/benny-onrust/</u>

