
Indoor3D: A WebGL Based Open Source
Framework for 3D Indoor Maps Visualization

Meng Gai, Guoping Wang
Peking University

Outline
•  Motivation and Backgrounds
•  Our Design
•  Algorithm

o  Best view generation
o  Progressive visibility of elements

•  Results
•  Future Work
•  Conclusion

Motivation
Indoor maps are widely used in shopping malls, airports,
subways, etc.

Related work
As far as we know there has not been any open source indoor map
visualization framework.

Commercial services:
•  Google indoor map
•  Amap (Gao De)
•  weiditu

Related work
Reconstruction from 2D Floor Plans [Lewis and Sequin
1998] [Zhu et al. 2014]

Related work
•  indoorGML: A candidate OGC standard for an open data

model and XML schema for indoor spatial information.

Our Design
•  Web based
•  Simple data format for network transmission
•  Easy to use and be customized by developers

Data Structure
Building

Floor

Rooms

public facility
spots

Data Structure

Room Room Room…

Point Point Point…

Floors

 Points
Floor

Floor

Floor

Building

Map Data

 Rooms …

Figure 3: The data structure of the JSON file.

data structure is extensible, and designed independent of implemen-
tation, so that it can also be used in other indoor maps applications
easily, such as those rendering maps in 2D.

We design our file format according to the real structure of a build-
ing straightforwardly. A complete indoor map is composed of four
parts: Building, Floors, Rooms and Points. All the geometry in-
formation are stored in 2D, and it will be extruded to 3D in the
front end. Building, Floors and Rooms all contain a series of poly-
gons (only one in most cases) to present their outlines, while Points
stand for the facility spots whose positions are represented as sin-
gle points. All of them have their own unique id to identify from
each other. Many interfaces for the developers are using id as the
parameters in Indoor3D.

The Building holds the information of the building, itself such as
the building’s name, its address, the latitude and the longitude. The
geometry shape property is a series of arrays. Each array is some
numbers to represent a polygon. Each pair of the numbers is a
coordinate point. Usually, only one array is used, and the other
ones are used for cases of multi-polygons and holes.

The Floors structure is an array. Each element of the array de-
scribes a floor. The floor contains an array of Rooms and Points.
The Floor’s properties are also extensible to hold more information
(the floor’s name, area, height, etc.). The Room is a function area in
a floor, such as a shop in a mall or a closed area. The type informa-
tion of the Room is used for colourization. The Floor and Room’s
geometry shapes are represented in the same way as the outline of
the Building. The Point is used to represent the facility spots, they
will be shown as an round icon later.

The file sample file format is shown in Figure 2. And the diagram
to sketch the data structure is shown in Figure 3. Notice the infor-
mation of the Building and the Floors are separated. Because in
some cases, the building’s information is not necessary. Moreover,
some applications may take advantage of this file structure to sup-
port streaming transmission and display some of the floors as soon
as they are loaded.

The original JSON file without trimming spaces is usually less than
1 MB. The file of a map with seven floors and more than 300 rooms
in Figure 1 is less than 300KB. Further compression techniques
can make it even smaller. This file size is totally acceptable in web
applications.

There are many ways to get the required map data. Since the data
structure is clean and simple, the map data from other application

can be converted to ours easily. Besides, similar to the problem of
building reconstruction from 2D floor plans, automatical converting
algorithm can be studied. Furthermore, we are developing an utility
to let the users create the map interactively.

3.2 Architecture

Building(Model) Controller

Renderer(View)Draw
Change

JSON Data

MapLoader

Load/Parse

User Interaction

Mouse/Touch Events

Indoor3D

Developers

Theme

Access and Customize

Figure 4: The architecture of Indoor3D based on MVC pattern.

As mentioned before, the architecture of our framework is designed
based on the MVC pattern. Several utility functions are defined to
loose coupling and increase flexibility. The architecture is shown in
Figure 4

A MapLoader class is defined to request the JSON file and parse
it to a Building object. The 3D Mesh models are all created during
this approach according to the Theme. The 2D sprites of texts and
icons are create in a lazy way later. The properties of the Theme are
easy to understand. They describe the color, opacity, stroke style,
font and icons. Even the designers without programming experi-
ence can modify it easily.

The Building class serves as a container of the 3D models and 2D
sprites. When the user switch the floors, the Building is in charge
of removing old objects from the scene and add the new objects in
the current floor to the scene. If the 2D sprites in a floor have not
been created yet, they will be create at the time when the floor is
switching to visible. Once they are created, they will be cashed in
case of later use.

The Renderer is naturally the ones provided by ThreeJS. There are
three kinds of render engine available: WebGL, HTML5 Canvas
and SVG. The WebGLRenderer is first considered. The other ones
are only considerable when WebGL is not supported.

The Controller class receives all the interaction events from the
user and convert it to the transformation operations(pan, pivot and
zoom) by manipulating the camera in Indoor3D. On desktop com-
puters, the click event in the browser is dealed with. While on mo-
bile devices, it handles the touch events. Although using WebGL
can achieve high frame frequency, we let the controller notice the
Renderer to update only when the view is changed. This saves the

The original JSON file is
usually less than 1MB.

Architecture
MVC based architecture
•  Model: The building’s data
•  Renderer: WebGL or Canvas Renderer
•  Controller: Handling user interactions

Room Room Room…

Point Point Point…

Floors

 Points
Floor

Floor

Floor

Building

Map Data

 Rooms …

Figure 3: The data structure of the JSON file.

data structure is extensible, and designed independent of implemen-
tation, so that it can also be used in other indoor maps applications
easily, such as those rendering maps in 2D.

We design our file format according to the real structure of a build-
ing straightforwardly. A complete indoor map is composed of four
parts: Building, Floors, Rooms and Points. All the geometry in-
formation are stored in 2D, and it will be extruded to 3D in the
front end. Building, Floors and Rooms all contain a series of poly-
gons (only one in most cases) to present their outlines, while Points
stand for the facility spots whose positions are represented as sin-
gle points. All of them have their own unique id to identify from
each other. Many interfaces for the developers are using id as the
parameters in Indoor3D.

The Building holds the information of the building, itself such as
the building’s name, its address, the latitude and the longitude. The
geometry shape property is a series of arrays. Each array is some
numbers to represent a polygon. Each pair of the numbers is a
coordinate point. Usually, only one array is used, and the other
ones are used for cases of multi-polygons and holes.

The Floors structure is an array. Each element of the array de-
scribes a floor. The floor contains an array of Rooms and Points.
The Floor’s properties are also extensible to hold more information
(the floor’s name, area, height, etc.). The Room is a function area in
a floor, such as a shop in a mall or a closed area. The type informa-
tion of the Room is used for colourization. The Floor and Room’s
geometry shapes are represented in the same way as the outline of
the Building. The Point is used to represent the facility spots, they
will be shown as an round icon later.

The file sample file format is shown in Figure 2. And the diagram
to sketch the data structure is shown in Figure 3. Notice the infor-
mation of the Building and the Floors are separated. Because in
some cases, the building’s information is not necessary. Moreover,
some applications may take advantage of this file structure to sup-
port streaming transmission and display some of the floors as soon
as they are loaded.

The original JSON file without trimming spaces is usually less than
1 MB. The file of a map with seven floors and more than 300 rooms
in Figure 1 is less than 300KB. Further compression techniques
can make it even smaller. This file size is totally acceptable in web
applications.

There are many ways to get the required map data. Since the data
structure is clean and simple, the map data from other application

can be converted to ours easily. Besides, similar to the problem of
building reconstruction from 2D floor plans, automatical converting
algorithm can be studied. Furthermore, we are developing an utility
to let the users create the map interactively.

3.2 Architecture

Building(Model) Controller

Renderer(View)Draw
Change

JSON Data

MapLoader

Load/Parse

User Interaction

Mouse/Touch Events

Indoor3D

Developers

Theme

Access and Customize

Figure 4: The architecture of Indoor3D based on MVC pattern.

As mentioned before, the architecture of our framework is designed
based on the MVC pattern. Several utility functions are defined to
loose coupling and increase flexibility. The architecture is shown in
Figure 4

A MapLoader class is defined to request the JSON file and parse
it to a Building object. The 3D Mesh models are all created during
this approach according to the Theme. The 2D sprites of texts and
icons are create in a lazy way later. The properties of the Theme are
easy to understand. They describe the color, opacity, stroke style,
font and icons. Even the designers without programming experi-
ence can modify it easily.

The Building class serves as a container of the 3D models and 2D
sprites. When the user switch the floors, the Building is in charge
of removing old objects from the scene and add the new objects in
the current floor to the scene. If the 2D sprites in a floor have not
been created yet, they will be create at the time when the floor is
switching to visible. Once they are created, they will be cashed in
case of later use.

The Renderer is naturally the ones provided by ThreeJS. There are
three kinds of render engine available: WebGL, HTML5 Canvas
and SVG. The WebGLRenderer is first considered. The other ones
are only considerable when WebGL is not supported.

The Controller class receives all the interaction events from the
user and convert it to the transformation operations(pan, pivot and
zoom) by manipulating the camera in Indoor3D. On desktop com-
puters, the click event in the browser is dealed with. While on mo-
bile devices, it handles the touch events. Although using WebGL
can achieve high frame frequency, we let the controller notice the
Renderer to update only when the view is changed. This saves the

Usage

Usage

Best View Generation

Selecting the best views for 3D object has been well
studied, especially in the CAD field. [Mortara and
Spagnuolo 2009]. [Fu et al. 2008] [Hu et al. 2011]

The main idea: maximize the visibility of visual
features

Best View Generation
•  PCA (Principal components analysis)
•  The center of the floor’s boundary P1
•  The average center of the rooms P2
•  Count the result of all floors

P1

P2

Best View Generation

Progressive Visibility of Elements

To fit the 3D indoor map right in the view port, the proper distance
between the camera and the center of the scene can be computed
easily:

d =
H

2
cot(

✓
fovy

2
)

where H is the height of the floor’s OBB.

The last step is to decide at which side of the principal direction the
camera should be positioned. Starting from the idea of helping the
users to exhibit more informations, we choose the side with more
rooms. This is computed by comparing the center of the floor’s
OBB and the average center of all the rooms in this floor.

The view is shown in Figure 6. The red arrow shows the first prin-
cipal direction. The tilt angle ✓ is set to 75 degree in our system, so
that the users can see all the rooms and get good experience of 3D
perspective.

4.3 Progressive Visibility of Texts and Icons

Showing all the texts and icons at the same time will be a disaster.
The overlap of these sprites will bring bad visual effects. To show
the texts and icons progressively, we employed an priority based
algorithm. When the indoor map is zooming out, the elements with
high priority are more likely to be kept, others will become invisi-
ble.

(a) (b)

Figure 7: Progressive visibility of the texts and icons. More de-
tailed elements are shown when zooming in

For the text names, the default priority is set to the area of the room,
which can be directly computed by the polygon outline. That means
the names of bigger rooms tend to be kept when zooming out. More
advanced priorities can be designed if there is more information.
For example, if the popularity index of every shop is available, the
priority may take the popularity into account and defined as follow-
ing:

P
i

= w1
S
i

S
max

+ w2
Pop

i

Pop
max

where P
i

, S
i

and Pop
i

are the priority, area and popularity index
of the ith shop respectively. S

max

and Pop
max

are the maximum
shop area and popularity index of current floor. w1 and w2 are the
weights to balance these two items.

For the icons of facility spots, the default priority descending order
is set as Table 2. The priority is designed based on the idea that
the icons showing navigation information are more important, and
the entrances are the most important. This is coincident with the
psychological expectation of the customers.

Table 1: The priority of facility spots

point type Entrance Staircase Escalator elevator Toilet others
priority 3 2 2 2 1 0

Notice that if the element is set to visible as soon as it turns not
overlapping with other ones, there will be an undesired flicking
effect. Because the elements may switch between visible and in-
visible frequently when the user is pivoting. So we add a margin
area to the element’s bounding rectangle when it is about becoming
visible from invisible. Only when the gap between the bounding
rectangles is beyond a threshold, it does turn to visible again. In
our experiment, the margin value is set to 5 pixels to achieve good
visual effects.

The algorithm is shown in Algorithm1.

Algorithm 1 decide the visibility of elements(texts and icons)

sort the element by descending priority order
for i = 1 to elements.length do

visibility true
margin 5
for j = 0; j < i; j ++ do

recti elements(i).boundingRect
rectj elements(j).boundingRect
if elements(j).visible and recti.collide(rectj) then

visibility false
break

end if
recti.shrink(margin)
rectj.shrink(margin)
if elements(i).visible 6= true and recti.collide(rectj)
then

visibility false
break

end if
end for
elements(i).visible visibility

end for

4.4 User Interaction

We use the classical ray casting method to check which object is
selected by users. When showing all the floors, the floors are treated
as an integral whole object, while when showing a floor, the rooms
are the objects to be checked. The default behaviour of the selected
room is high lighted to light yellow.

Developers can set a selection listener to Indoor3D to customize
the behaviour of the map when something is selected. There are
3 parameters passed to the callback listener: the id of the selected
object, the projected 3D position of the click point, and the selected
object. This is useful when the developer wants to create a de-
tailed popup dialog or put a marker in the map when something is
selected. Some exmaples of customized interactions are shown in
Figure 8.

4.5 Downward Compatibility

Based on the idea of progressive enhancement, we have many
strategies for those browsers that do not support WebGL.

On a desktop computer with older browsers, Indoor3D use the Can-
vasRenderer provided by ThreeJS. But for some of the mobile de-
vices, the computing resources are limited, so the CanvasRenderer

Progressive Visibility of Elements

To fit the 3D indoor map right in the view port, the proper distance
between the camera and the center of the scene can be computed
easily:

d =
H

2
cot(

✓
fovy

2
)

where H is the height of the floor’s OBB.

The last step is to decide at which side of the principal direction the
camera should be positioned. Starting from the idea of helping the
users to exhibit more informations, we choose the side with more
rooms. This is computed by comparing the center of the floor’s
OBB and the average center of all the rooms in this floor.

The view is shown in Figure 6. The red arrow shows the first prin-
cipal direction. The tilt angle ✓ is set to 75 degree in our system, so
that the users can see all the rooms and get good experience of 3D
perspective.

4.3 Progressive Visibility of Texts and Icons

Showing all the texts and icons at the same time will be a disaster.
The overlap of these sprites will bring bad visual effects. To show
the texts and icons progressively, we employed an priority based
algorithm. When the indoor map is zooming out, the elements with
high priority are more likely to be kept, others will become invisi-
ble.

(a) (b)

Figure 7: Progressive visibility of the texts and icons. More de-
tailed elements are shown when zooming in

For the text names, the default priority is set to the area of the room,
which can be directly computed by the polygon outline. That means
the names of bigger rooms tend to be kept when zooming out. More
advanced priorities can be designed if there is more information.
For example, if the popularity index of every shop is available, the
priority may take the popularity into account and defined as follow-
ing:

P
i

= w1
S
i

S
max

+ w2
Pop

i

Pop
max

where P
i

, S
i

and Pop
i

are the priority, area and popularity index
of the ith shop respectively. S

max

and Pop
max

are the maximum
shop area and popularity index of current floor. w1 and w2 are the
weights to balance these two items.

For the icons of facility spots, the default priority descending order
is set as Table 2. The priority is designed based on the idea that
the icons showing navigation information are more important, and
the entrances are the most important. This is coincident with the
psychological expectation of the customers.

Table 1: The priority of facility spots

point type Entrance Staircase Escalator elevator Toilet others
priority 3 2 2 2 1 0

Notice that if the element is set to visible as soon as it turns not
overlapping with other ones, there will be an undesired flicking
effect. Because the elements may switch between visible and in-
visible frequently when the user is pivoting. So we add a margin
area to the element’s bounding rectangle when it is about becoming
visible from invisible. Only when the gap between the bounding
rectangles is beyond a threshold, it does turn to visible again. In
our experiment, the margin value is set to 5 pixels to achieve good
visual effects.

The algorithm is shown in Algorithm1.

Algorithm 1 decide the visibility of elements(texts and icons)

sort the element by descending priority order
for i = 1 to elements.length do

visibility true
margin 5
for j = 0; j < i; j ++ do

recti elements(i).boundingRect
rectj elements(j).boundingRect
if elements(j).visible and recti.collide(rectj) then

visibility false
break

end if
recti.shrink(margin)
rectj.shrink(margin)
if elements(i).visible 6= true and recti.collide(rectj)
then

visibility false
break

end if
end for
elements(i).visible visibility

end for

4.4 User Interaction

We use the classical ray casting method to check which object is
selected by users. When showing all the floors, the floors are treated
as an integral whole object, while when showing a floor, the rooms
are the objects to be checked. The default behaviour of the selected
room is high lighted to light yellow.

Developers can set a selection listener to Indoor3D to customize
the behaviour of the map when something is selected. There are
3 parameters passed to the callback listener: the id of the selected
object, the projected 3D position of the click point, and the selected
object. This is useful when the developer wants to create a de-
tailed popup dialog or put a marker in the map when something is
selected. Some exmaples of customized interactions are shown in
Figure 8.

4.5 Downward Compatibility

Based on the idea of progressive enhancement, we have many
strategies for those browsers that do not support WebGL.

On a desktop computer with older browsers, Indoor3D use the Can-
vasRenderer provided by ThreeJS. But for some of the mobile de-
vices, the computing resources are limited, so the CanvasRenderer

Area Popularity

Progressive Visibility of Elements
Add a margin to
avoid the flicking
effect

Results
•  Three.js for WebGL Rendering
•  HTML5 canvas for 2D backward compatibility

Results

(a)

(b) (c)

Figure 8: different customized interactions.(a) Floors selection (b)
Add a marker on selected shop. (c) Add a popup dialog

is not efficient enough. We provide a 2D version indoor map ren-
dered by HTML5 canvas. The translation and rotation act directly
on the canvas DOM element rather than redraw the canvas. In such
a way, the 2D map can run smoothly on some older mobile devices.

5 Result and Discussions

5.1 Results

We have tested our framework on several platforms, it can run on an
real-time frame on every platform which supports WebGL. Because
we redraw the scene only when the view is changed, it runs on a full
frame rate when the view is static. When the user is interacting, the
frame rate will drop down a little bit. The interacting frame rates
of showing the map in Figure 1 on 3 of the platforms are shown in
Table

Table 2: The Frame rates of interacting on different platforms

Device OS CPU GPU Browser FPS

Desktop PC Windows 8 i5 2.8GHz
NVIDIA
GeForce
GTX 550 Ti

Chrome 41 50

Macbook Air Mac OS X i5 1.3 GHz
Intel HD
Graphics 5000

Chrome 41 60

Macbook Air Mac OS X i5 1.3 GHz
Intel HD
Graphics 5000

Safari 8 40

The new iPad IOS 8 A5X A5X Safari 25

Figure 9 are some different rendering styles which shows the flex-
ibility and extensibility of our framework. The color, stroke and
transparency are different between each other.

Figure 9: different rendering styles

5.2 Future Work

This is the first step of our work, more future work is required for
a complete indoor map framework. First, navigation function is
usually necessary for a map application. When the users set the
start point and end point in a map, the closest path will be generated.
This function is especially useful when the indoor map is registrated
to the real building. Besides, more customization functions will
bring more convenience to developers, such as adding heat map
layers onto the map. Moreover, acquiring the map data is an tough
but important task. Creating an whole indoor map data manually
remains tedious for the users. Developing the algorithm which can
convert existing vector plans or raster images to our indoor maps
data automatically will help a lot.

6 Conclusion

In this paper we presented our Indoor3D framework. It takes advan-
tage of WebGL to render 3D indoor scenes. We designed a JSON
file to store the map structure, and solves several problems sush
as best view selection and progressive element visibility to achieve
better user experience. The framework is designed flexible so that
it allows the developers and designers to customize it conveniently.

We believe many organizations will benefit from our Indoor3D
framework. airports, subway stations and shopping malls will pro-
vide better interactive services for guests and customers with our
Indoor3D framework.

The source code and documentation are available from the web-
site[Gai 2015].

Acknowledgements

This research was supported by Grant No. 61421062, 61170205,
61232014, 61472010 from National Natural Science Foundation of
China. Also was supported by Grant No. 2012AA011503 from The
National Key Technology Research and Development Program of
China.

References

BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. 2011. D3 data-
driven documents. Visualization and Computer Graphics, IEEE
Transactions on 17, 12, 2301–2309.

Customized Themes

Results
Customized Interactions

Future Work
•  Location registration & navigation functions
•  Tools for acquiring the map data

Conclusion
•  In this paper we presented our Indoor3D framework.
•  It takes advantage of WebGL to render 3D indoor scenes.
•  We designed a JSON file to store the map structure.
•  We solve several problems sush as best view selection and

progressive element visibility to achieve better user experience.
•  The framework is designed flexible so that it allows the developers

to customize it conveniently.

Thank you!

Q&A

https://github.com/wolfwind521/indoor3D

Email: gaimeng@pku.edu.cn

